skip to main content


Search for: All records

Creators/Authors contains: "Ryoo, Jean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper explores the relationship between high school students’ shifting computer science (CS) identity and engagement over the course of one school year in both Advanced Placement Computer Science Principles and Exploring Computer Science classrooms in a large US west coast urban school district. Through an analysis of over 500 pre- and post-surveys administered during the 2018-19 school year—with an intersectional analysis comparing Latina and Latino perspectives in this primarily low-income, Latino/a/x school district—this paper answers the following research questions: (1) Who identifies as “CS people” and what does that mean to them? and (2) Which teaching practices seem to have the greatest relationship with CS identification and engagement? 
    more » « less
  2. Taking a justice-oriented approach to equity in Computer Science (CS) education, this paper questions the dominant discourse in CS education and asks what truly makes CS learning consequential from the perspective of youth. We define CS learning as consequential by focusing on its transformative impact on youth identity, agency, and perceptions of the world within and beyond CS classrooms, regardless of whether or not they pursue CS in the future. Our research-practice partnership used qualitative data, specifically longitudinal interview data with 30 students up to three years after they first experienced a high school CS class in a large public school district on the west coast serving majority Latinx, urban, low-income students. Our findings suggest that in order for CS learning to be meaningful and consequential for youth, learning must involve: 1) freedom for youth to express their interests, passions, and concerns; 2) opportunities for youth to expand their views of CS and self; and 3) teacher care for students, learning community, and subject matter. The findings have significant implications for the broader “CS for All” movement and future efforts to reform policy agendas aiming for a more justice-centered CS education. 
    more » « less
  3. The Computer Science for All movement is bringing CS to K-12 classrooms across the nation. At the same time, new technologies created by computer scientists have been reproducing existing inequities that directly impact today's youth, while being “promoted and perceived as more objective or progressive than the discriminatory systems of a previous era” [1, p. 5–6]. Current efforts are being made to expose students to the social impact and ethics of computing at both the K-12 and university-level—which we refer to as “socially responsible computing” (SRC) in this paper. Yet there is a lack of research describing what such SRC teaching and learning actively involve and look like, particularly in K-12 classrooms. This paper fills this gap with findings from a research-practice partnership, through a qualitative study in an Advanced Placement Computer Science Principles classroom enrolling low-income Latino/a/x students from a large urban community. The findings illustrate 1) details of teaching practice and student learning during discussions about SRC; 2) the impact these SRC experiences have on student engagement with CS; 3) a teacher's reflections on key considerations for effective SRC pedagogy; and 4) why students’ perspectives and agency must be centered through SRC in computing education. 
    more » « less
  4. CSforALL and SageFox (Ed.)
    Computer science (CS) has the potential to positively impact the economic well-being of those who pursue it, and the lives of those who benefit from its innovations. Yet, large CS learning opportunity gaps exist for students from systemically excluded populations. Because of these disparities, the Computer Science for All (CS for All) movement has brought nationwide attention to inequity in CS education. Funding agencies and institutions are supporting the development of research-practice partnerships (RPPs) to address these disparities, recognizing that collaboration between researchers and educators yields accurate and relevant research results, while informing teaching practice. However, for initiatives to effectively make computing inclusive, partnership members need to begin with a shared and collaboratively generated definition of equity to which all are accountable. This paper takes a critical look at the development of a shared definition of equity and its application in a CS for All RPP composed of university researchers and administrators from local education agencies across a large west coast state. Details are shared about how the RPP came together across research and practice to define equity, as well as how that definition continued to evolve and inform the larger project’s work with school administrators/educators. Suggestions about how to apply key lessons from this equity exercise are offered to inform similar justice-oriented projects. 
    more » « less
  5. Background and Context: Most large-scale statewide initiatives of the Computer Science for All (CS for All) movement have focused on the classroom level. Critical questions remain about building school and district leadership capacity to support teachers while implementing equitable computer science education that is scalable and sustainable.

    Objective: This statewide research-practice partnership, involving university researchers and school leaders from 14 local education agencies (LEA) from district and county offices, addresses the following research question: What do administrators identify as most helpful for understanding issues related to equitable computer science implementation when engaging with a guide and workshop we collaboratively developed to help leadership in such efforts?

    Method: Participant surveys, interviews, and workshop observations were analyzed to understand best practices for professional development supporting educational leaders.

    Findings: Administrators value computer science professional development resources that: (a) have a clear focus on “equity;” (b) engage with data and examples that deepen understandings of equity; (c) provide networking opportunities; (d) have explicit workshop purpose and activities; and (e) support deeper discussions of computer science implementation challenges through pairing a workshop and a guide.

    Implications: Utilizing Ishimaru and Galloway’s (2014) framework for equitable leadership practices, this study offers an actionable construct for equitable implementation of computer science including (a) how to build equity leadership and vision; (b) how to enact that vision; and (c) how to scale and sustain that vision. While this construct applies to equitable leadership practices more broadly across all disciplines, we found its application particularly useful when explicitly focused on equity leadership practices in computer science.

     
    more » « less
  6. null (Ed.)
  7. Who makes decisions about what K-12 computer science education(CSed) should look like? While equitable participation is a central focus of K-12 CSed, the field has largely thought about equity through the lens of providing access to inclusive and robust CS learning. But issues of who has a "seat at the table" in determining the shape of those experiences, and the larger field that structures them, have been largely under-explored. This panel session argues that equitable CSed must take into account questions of participation in decision-making about CSed, with such issues of power themselves a key dimension of equity in any education effort. We highlight efforts engaging stakeholders from across the education landscape-parents, educators, community members, administrators, and students-exploring how decision-making is structured, how voices that are usually marginalized might be elevated, the tensions involved in these processes, and the relationships between participation and equity. 
    more » « less
  8. null (Ed.)
  9. Efforts to broaden participation in computing address how systemic school structures, educator preparation, and curriculum can provide inclusive learning spaces for all students. The emerging multiplicity of scholarship in computer science (CS) education forwards diverse voices, perspectives, and positionalities, and together, provide a rich set of evidence-based narratives that can transform K-12 policies and practices. The four projects featured in this panel bring together CS education efforts with varying methodologies focused on equity-oriented pedagogies and learning for all youth across the US. This panel will focus not only on sharing the multi-pronged efforts of the featured projects, but also on developing a shared vision among participants and panelists for what equity" can and should be in the future of both SIGCSE and CS education as we celebrate SIGCSE's 50th anniversary. By highlighting the work of projects rather than individuals in this panel, audience members will have the opportunity to learn about how collaborative efforts create and examine contexts for equity in CS education across diverse stakeholders, while also providing a richer base for constructing visions of equity that go beyond mere platitudes, toward action items for broadening participation in computing. 
    more » « less